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Abstract—Until now, design of variable physical impedance
actuators (VIAs) has been limited mainly to realising variable
stiffness while other components of impedance shaping, such
as damping, are either fixed (e.g., with the addition of fixed
passive dampers) or modulated with active feedback control
schemes. In this work we introduce an actuator that is capable
of simultaneous and independent physical damping and stiffness
modulation. Using optimal control techniques, we explore how
variable physical damping can be exploited in such an actuator
in the context of rapid movement. Several numerical simulation
results are presented, in addition to an experiment realised on
variable impedance robotic hardware.

I. INTRODUCTION

In recent years, the robotics community has looked for in-

spiration in the capabilities of humans to design a generation

of actuators that have variable impedance [1], [2], [3]. The

benefits of such actuators include high dynamic range (e.g.

due to the ability to store energy in spring-like actuators) [4]

and a stable and fast response (since compliance is built into

the actuator mechanically, sensory feedback is not required

to respond to perturbations).

However, a common deficiency of such actuators is that

impedance modulation is restricted to altering the physical

stiffness alone, while other impedance terms (such as the

damping) are fixed. Currently, many passive variable stiffness

actuators still rely on active control schemes to realise

damping requirements [5], and there are very few actuator

designs that are able to passively vary damping [6]. For those

that do, it remains an open question as to how to exploit this

added degree of actuation redundancy.

Research in the control of variable physical stiffness has

shown optimal control to be an effective methodology for

designing control strategies that can exploit variable passive

compliance. For example, optimal control approaches have

been shown to be highly effective in exploiting the elastic

properties of variable stiffness actuators in explosive tasks

such as throwing and hitting [4], [7] as well as in periodic

tasks [8], [9], [10]. In addition, stochastic optimal control

with model adaptation has also been exploited in order to

cope with model uncertainty and perturbations [11], [12],

[13]. This is also consistent with observations regarding the

way in which humans adapt their impedance under similar

conditions [14].

In this paper we investigate how variable physical damping

can be (i) implemented in robotic hardware and (ii) exploited

according to the principles of optimal control. We propose a

mechanism based on using electrical inductance to cause a

variable mechanical damping effect, derive a minimalistic
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model to identify this damping effect, and illustrate how

it can be integrated into an established variable stiffness

device to achieve simultaneous and independent stiffness and

damping modulation. Having validated our model of the

damping mechanism, we then show how variable damping

can be exploited in the context of rapid movement tasks.

We present simulation results that illustrate that variable

damping can outperform fixed damping schemes in the

context of fast reaching to a target. Finally, we illustrate the

effectiveness of our approach with an experiment realised

on an implementation of our passive variable impedance

actuator in hardware.

II. MOTIVATION AND RELATED WORK

There is currently an abundance of designs for mechanisms

that can vary stiffness (for a review, see [15]), but relatively

few explicitly consider damping requirements for efficient

operation [5], [6]. In this section we discuss the issue

of damping in the context of variable physical impedance

actuation.

A. Damping in Variable Stiffness Actuators

To investigate the effects of damping modulation in the

above mentioned framework, we selected the simplest system

available - a one-link joint system. The equation of motion

for such a system is:

Jq̈ = τ + τf , (1)

where J represents the inertia, q̈ ∈R the joint acceleration,

τ ∈ R is the torque provided by the actuators (defined as

τ = τk+τb with τk and τb the stiffness and damping torques,

respectively) and τf ∈R is the torque due to friction.

Intuitively, an appropriate selection of the damping is

crucial for responsive, accurate control of a VIA. If the

system is too lightly damped oscillations arise when rapid

movements are attempted. In contrast, if the damping is too

heavy its response will be sluggish, in which case many of

the positive effects of (variable) passive stiffness, such as

energy storage, may not be exploited. One may also say that,

in general, it is natural to consider adding variable damping

to a system with variable stiffness in order to achieve an

appropriate response (e.g., under-, over-, or critical damping)

as the stiffness varies. In the following, we explore these

issues with respect to a simple example of a variable stiffness

actuator (VSA).

B. Example: Mechanically Adjustable Compliance and Con-

trollable Equilibrium Position Actuator (MACCEPA)

As an example of a VSA that is easy to build and intuitive

to operate we apply our variable damping scheme to the
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(a) Model.

(b) Robot.

Fig. 1. Mechanically Adjustable Compliance and Controllable Equilibrium
Position Actuator (MACCEPA) [16] with Variable Damping. Parameters:
r=0.01m, B=0.03m, C=0.13m, link mass: 0.125kg, link length: 0.295m,
centre of mass location on the link: 0.1475m

Mechanically Adjustable Compliance and Controllable Equi-

librium Position Actuator (MACCEPA) [16]. An illustration

of the device is provided in Fig. 1 and a brief description of

its operation follows.

The MACCEPA is designed to give simultaneous equilib-

rium position and joint stiffness control through use of two

independently controlled servomotors. The first servomotor

(attached to the free-moving link) adjusts the position of a

lever of length B, while the second (attached to the base)

adjusts the position of a winding drum of radius r attached

via a cord to the spring (see Fig. 1(a)).

Torque around the joint is produced when a discrepancy

is introduced between the first servomotor angle u1 and the

joint angle q (i.e., α := u1− q 6= 0) causing the spring to be

extended away from its rest length L0 = C−B. The restora-

tive spring force is F = −κ(L− L0) where κ is the spring

constant and L is the resultant length of the spring. The

latter is given by the length A =
√

B2 + C2 − 2BC cos α
(see Fig. 1(a)) plus any additional extension due to the pre-

tensioning servo u2, i.e., L = A + ru2.

Considering the moment arm, the torque around the joint

is given by

τk(q, u1, u2) = κBC sinα

(

1 +
ru2 − (C −B)√

B2 + C2 − 2BC cos α

)

(2)

and the stiffness (k := −∂τ/∂q) is

k(q, u1, u2) = κBC cos α

(

1 +
r u2 − (C −B)√

B2 + C2 − 2BC cos α

)

−κB2C2 sin2 α (ru2 − (C −B))

(B2 + C2 − 2BC cos α)
3

2

. (3)

(For full details of the derivation of the torque relationship

(2) we refer the reader to [16].) Note that, as with many

VSA designs, the joint torque and stiffness have a non-linear

dependence on the joint and motor configurations.

In addition to this existing design, we add a third control

variable u3, corresponding to damping modulation. Thus for

the combined system (MACCEPA with Variable Damping,

MACCEPA-VD) the torque relationship corresponding to τ
from (1) is:

τ(q, q̇, u1, u2, u3) = τk(q, u1, u2) + τb(q̇, u3), (4)

where τk(q, u1, u2) is given by (2). The details of the

mechanical design used are presented in Sec. III. For details

of the system identification and estimation of the damping

please see the Appendix.

C. Selecting the System Response

For the efficient control and operation of a VSA such as

the MACCEPA, it is necessary to select an appropriate

system response dependant on the task. For example, in

periodic tasks, such as running, one may wish to have an

underdamped response, encouraging oscillation through the

natural dynamics. In tasks such as tracking, on the other

hand, one may require something akin to critical damping,

to ensure the target reference is reached as rapidly as possible

without overshoot.

For one-link linear-time-invariant (LTI) systems this is

relatively straight-forward since the damping response can

be characterised through the damping ratio

ξ = b/2
√

kJ, (5)

where J represents the inertia, b the damping and k the

stiffness. In an LTI system selecting, for example, a critically

damped response simply requires choosing b such that ξ = 1.
Systems with variable stiffness (e.g. k = k(q, u1, u2)),

however, are not LTI by definition. Selection of the damping

response for such systems is non-trivial, and will in general

require modulation of b in a non-trivial way. This is evident

in the case of the MACCEPA, where there is a complex, non-

linear dependence of the stiffness (3) on the joint and motor

configurations. Furthermore, since such systems are not LTI,

the damping response is not well-characterised through ξ
as defined by (5) and so, for example, ensuring ξ = 1
(e.g., by coupling the stiffness and damping through (5))

may not result in the fastest non-oscillatory response (i.e.,

critical damping). Indeed, this expectation is confirmed in

our experiments (ref. Sec. V).

D. Related Work

Active, passive and semi-active damping are all viable ways

to modulate the dissipative properties of a dynamical system.

Among the three, active damping, realised through velocity

feedback, is the most frequently used in practice. While

implementation of this method can be done solely through

software control, its stable dissipative operation is limited by

the bandwidth of the feedback loop. Indeed, due to noise and

phase lag issues, the non-ideal velocity feedback may lead to

instability. In addition to this effect active damping control

may lead to a considerable energy cost.



As an alternative purely passive damping can be realised

by dissipative mechanical elements (i.e., dampers, brakes)

that are guaranteed to be passive regardless of the excita-

tion. Such elements have no bandwidth limitation however,

their dissipative properties cannot be modulated during task

execution. The compromise between these two methods is

provided by semi-active damping. Conceptually semi-active

damping is active modulation of the passive damping.

In practice semi-active damping is mainly realised through

magnetorheological (MR) dampers and frictional dampers

(FD). MR dampers are filled with a suspension of iron

particles and oil as a base fluid (i.e., MR fluid). The damping

properties of such devices can be directly controlled with

a magnetic field, that solidifies the MR fluid [17], [18].

In the context of robotic applications, MR dampers require

additional space and introduce fluid in the system, which

is often not desirable. A different mechanism is employed

by frictional dampers that use Coulomb friction between

two moving bodies. In this case modulation of the frictional

force is achieved with control of the normal contact force.

A popular way to realise the latter is through piezo-electric

actuators [6], [18]. These semi-active damping methods

require additional elements in mechanical design, but have

considerably higher bandwidth and spend less energy com-

pared to active damping.

In this paper we consider an alternative design that exploits

a DC motor damping effect. The basic concept of this

approach is to attach a back-drivable motor/gearbox unit to

the joint (see Fig. 1) that operates as a generator during the

motion. In this way one converts mechanical energy to the

electrical domain where it is dissipated through a resistor. In

previous work the same effect has been used in the context of

designing adjustable dampers in haptic interfaces [19], [20].

To the authors knowledge, the present paper is the first to

combine variable physical stiffness and damping in a single

actuator with this approach. In the following, we outline the

details of the variable damping mechanism in our actuator.

III. MECHANISM DESIGN

A. Variable Passive Electrical Damping

When the output terminals of electric motors are connected

together (i.e., shorted) there is a motor braking effect

whereby rotations of the output shaft due to an externally

applied torque are opposed by a torque associated with the

current induced within the motor. In the present paper, we

utilise this electrical effect to control the passive mechanical

damping in our variable impedance system.

The electronics and equivalent circuit representing our

variable passive damper is depicted in Fig. 2. According

to this circuit, applying a voltage V will cause current I
according to

Lİ + ReI + Vemf = V, (6)

where L is the inductance of the circuit, Re the effective

resistance and Vemf is the back electromotive force (e.m.f.)

generated when the motor armature rotates. The relations

between (i) the angular velocity of the output shaft θ̇ and

Fig. 2. H-bridge damping: circuit (left) and equivalent circuit (right).

Vemf and (ii) the motor torque τm (reflected through the

gear reduction) and the current are given by

Vemf = nκq̇ θ̇, τm = nκτI, (7)

where κq̇ and κτ are the speed and torque constants of the

motor and n : 1 defines the gear reduction.

We now look to establish the relation between the motor

torque and the operation of the electrical circuit. It is clear

from (7) that by opening the electrical circuit (i.e., I = 0)
the motor torque becomes zero τm = 0, while by closing the

circuit, the torque generated by the motor is related to V and

θ̇. Furthermore, if we assume that the time constant τRL =
L/R of the equivalent (RL) circuit is small1 we can make a

steady-state approximation of the current: I ≈ Iss = (V −
Vemf )/Re, and analytically approximate the torque relation

τm ≈ nκτIss =
nκτ

Re

V − n2κτκq̇

Re

θ̇. (8)

This relation shows that τm is composed of a voltage

dependent driving torque (first term) and a motion dependent

braking torque (second term). Accordingly, by shorting the

terminals of the circuit together (i.e., V = 0), we can

generate viscous damping at the motor output shaft

τb(θ̇) = −beθ̇ = −n2κτκq̇

Re

θ̇. (9)

Note that this is a purely passive damping provided by the

motor without using any velocity feedback.

From (9) it is clear that the damping constant be depends

on the resistance of the equivalent circuit Re and, if we are

able to modulate this resistance, we can achieve a variable

passive damping effect. This can be done in various ways,

for example, one might add a mechanical variable resistor,

digital potentiometer, or other integrated circuit across the

motor terminals to adjust Re. In this case the resistance of

the equivalent circuit is the sum of the internal resistance of

the motor and the variable resistance component.

In our design, variable resistance is not used directly,

but instead its effect is emulated using an H-bridge (NSC:

LMD18200) circuit. This circuit opens and closes the con-

nection between the motor terminals according to a PWM

(pulse-width modulation) signal with controllable duty cycle

1According to (6), the dynamics of the current follows an exponential
tendency given by e−t/τRL . For our set-up, τRL = L/R = 7× 10−5

(i.e., L = 1.37×10−3H , and Re = 20.2Ω) which makes the steady-state
approximation of the current and the associated algebraic relation of the
torque (8) feasible.



u3 ∈ [0, 1]. In this way, the damping is modulated according

to the proportion of time that the connection is open or

closed: if the connection is open the damping effect vanishes

(i.e., u3 = 0 ⇒ τb = 0), while if the connection is closed

maximal damping is achieved (i.e., u3 = 1⇒ τb = −beθ̇).
Experiments characterising the damping effect in our robotic

device are reported in Sec. V-C.

The above variable damping mechanism can be integrated

with numerous VSAs simply by rigidly connecting the

DC motor shaft to the rotating part of the joint. In our

implementation we use a spur gear rigidly attached to the

free link to pick up the joint rotation of the MACCEPA (see

Fig. 1(b)).

IV. CONTROL FRAMEWORK

In general the non-linear, time-varying nature of many VIAs

makes the appropriate selection of the damping non-trivial

(see the discussion in Sec. II-C). To avoid this difficulty in

this paper we take an optimal control approach to design

strategies that are best able to exploit this additional degree of

freedom. In the following we briefly describe the formulation

of our approach, and the method employed for its solution.

A. Optimal Control Formulation

To define our optimal control problem, we consider a state-

space representation of the controlled system dynamics as

ẋ = f(x,u) ∈R
ν , (10)

where x∈R
ν denotes the system state and u∈R

µ denotes

the control inputs. The latter are drawn from the set of

admissible controls

U = {u ∈ R
µ : umin � u � umax}, (11)

where umin and umax are the lower and the upper bounds

on u, respectively.

Under these constraints, we seek to minimise the cost

c = h(x(T )) +

∫ T

0

l(x(t),u(t) , t) dt ∈ R, (12)

over finite time interval t ∈ [0, T ], where h(·) and l(·) are

the terminal and running costs, respectively. The latter are

selected according to the application to encode the task goals:

in Sec. IV-C we define an example cost function to encode

the objective of rapid movement.

B. Solution Method

While there exist various tools for the solution of problems as

defined by (10)-(12) [21], our method of choice is to use the

Iterative Local Quadratic Regulator (ILQR) method [22], as

a fast, approximate solver of optimal control problems. The

method is based on approximating the optimal control prob-

lem as linear-quadratic and performing iterative improvement

of the solutions around a nominal trajectory.

In brief, the algorithm starts with the initial state x0 and

user-supplied nominal initial control sequence ū, and the

corresponding state trajectory x̄. The dynamics (10) are

locally approximated as linear around the nominal trajectory

δẋ = fxδx + fuδu (13)

(where δx := x − x̄ and δu := u − ū) and the cost is

approximated as quadratic

δc = h⊤

x
δx(T )+δx⊤(T )hxxδx(T )+

∫ T

0

l⊤
x

δx + l⊤
u

δudt

+

∫ T

0

δx⊤lxxδx + δx⊤luxδu + δu⊤luuδudt. (14)

Here the ‘subscript’ notation denotes partial differentiation

of the term with respect to the subscript (so, for example, hx

is the Jacobian of h with respect to x and hxx is the Hessian

of h with respect to x).

Taking the two equations (13), (14), we can then form

a local LQR subproblem that can be solved efficiently

via a modified Ricatti-system [22]. The latter computes

the approximate cost-to-go function in the vicinity of the

nominal trajectory, which is then used to update the nominal

command trajectory ū ← ū + δu. The new nominal state

trajectory x̄ is computed via numerical simulation, and the

whole process is then repeated until convergence (i.e., δc ≈ 0
achieved numerically). A pseudocode of the ILQR method

is given in Algorithm 1; for full details, we refer the reader

to [22].

C. Application to Rapid Movement on the MACCEPA-VD

In order to apply the above control framework to the

MACCEPA-VD, we define the state and control inputs as

x= (q, q̇)⊤ = (x1, x2)
T and u= (u1, u2, u3)

⊤, respectively.

In this representation, by obtaining q̈ from (1) and replacing

it in (10), we obtain

ẋ =

(
q̇
q̈

)

= f(x,u) =

(
x2

(τ(x,u) + τf )/J)

)

. (15)

Due to the mechanical stops in the servos and PWD restric-

tions, the admissible command range is (−π/2, 0, 0)⊤ �
u � (π/2, π/2, 1)⊤.
To encode the objective of rapid, accurate reaching to

some target, we define the cost function

c =

∫ T

0

(q(t)− q∗)2 + εu(t)⊤u(t) dt, (16)

where q∗ is the target point in joint space, and T is the

maximum time duration allowed for the movement. Note

that, the first term in (16) influences the solution in several

ways. First, it encourages rapid movement by penalising

solutions for time spent away from the target point q∗.
Second, it ensures the system comes to a halt at the target

(if the target is reached before the final time T , the optimal

solution is to remain there to avoid incurring further costs).

Finally, it penalises overshoot (i.e., deviations for which

q(t)− q∗ > 0). The second term acts to regularise solutions,

with ε set to a small constant value (in our experiments

ε=10−8).

V. EXPERIMENTS

In this section we look at how variable damping can be ex-

ploited in the context of control of rapid movements on VIAs.

We first present numerical results illustrating the benefits of



Algorithm 1 Pseudocode of the ILQR algorithm

GIVEN:
• Model of plant dynamics f (10)
• Encoding of task through cost function (12)

INITIALISE:
• discretise time as p = 1 . . . P with △t = T/(P − 1)
• ūp = ū0, corresponding x̄p = x̄0

• Levenberg-Marquardt constant λ = λinit

REPEAT:
• Linearise dynamics around x̄p (13)
• Find quadratic approximation of the cost (14)
• solve the obtained local LQR problem → δup

———————————————————-
Solution to local LQR problem

• for p = 1 . . . P
compute the terms H, G and g

g := (lu)p + (fu
T )p(hx)p+1

G := (luu)p + (f⊤
u

)p(hxx)p+1(I + (fx)p)

H := (luu)p + (f⊤
u

)p(hxx)p+1(fu)p

compute H−1 (modified Cholesky decomposition)

[V,D] = eig(H)

(the eigenvectors (V) and eigenvalues (D) of H)

If (D(i, i) < 0) : D(i, i) = 0 ∨ i

D = D + Iλ

H−1 = VD−1VT

compute δup = −H−1 (g + Gδxp)
———————————————————-

• apply control law forward in time to the linearised
system (δxp+1 = fxδxp + fuδup with δx1 = 0)

• compute ũp = ūp + δup, corresponding x̃p and δc
• If (convergence - i.e. δc ≈ 0)

STOP
Else - (update Levenberg-Marquardt constant λ)
If (δc > 0) : ūp = ũp, x̄p = x̃p, decrease λ
Else : increase λ
End If

End If
UNTIL convergence

variable damping over (optimal) fixed damping schemes as

the stiffness varies due to the movement and/or the control.

We then present an experiment in hardware, verifying the

effectiveness of variable damping in the MACCEPA-VD.

A. Optimal Exploitation of Variable Damping

The goal of our first numerical experiment is to highlight

the benefits of optimal damping modulation compared to

traditional fixed damping schemes in the context of rapid

movements. For this, we compare reaching behaviour on the

MACCEPA-VD with (i) variable damping (with the damping

command optimised with respect to (16)), (ii) fixed damping

(also optimised with respect to (16)) and (iii) damping

coupled to the stiffness through (5) according to ξ=1.
To keep the analysis simple, we initially compare be-

haviours for which the equilibrium position command is

fixed at the target (u1 = q∗) and the spring pre-tension

command is fixed to u2 = π/8 rad. Note that, due to the
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Fig. 3. Joint position, velocity and damping profiles for reaching with (i)
critical (ii) optimal fixed and (iii) optimal variable damping. The vertical
dashed lines indicate the settling times for the three behaviours and the grey
shaded area the damping bounds. The damping ratio over the duration of
the movement is shown in the bottom right panel.

dependence of the stiffness k on q (see (3)), the movement

causes a natural (uncontrolled) variation of stiffness.

To evaluate performance, for each system we compute the

cost incurred under (16), and the settling time which we

define as the time at which (i) the absolute distance to the

target is less than a threshold value of |q∗−q(t)| < 0.01 rad,
and (ii) the velocity is |q̇(t)| < 0.02 rad/s. The results are

presented in Fig. 3 and Table I.

Fixed ξ Fixed b Variable b

Cost 0.068 0.048 0.042

Settling time (s) 1.800 1.460 1.300

TABLE I

COST AND SETTLING TIME FOR REACHING WITH FIXED ξ, FIXED

DAMPING AND VARIABLE DAMPING.

Looking at Table I, we first observe that the scheme in which

there is coupling between stiffness and damping (ξ = 1)
produces the slowest response and incurs the greatest cost.

This confirms the discussion in Sec. II-C: since the stiffness

and damping are state and control dependent, ξ = 1 does

not ensure critical damping, and in fact appears to result

in an overdamped response in this case. For the case of

optimal fixed damping the response is faster and (with a

small overshoot) settles well before the 2 s time limit. It is

interesting to note that for the MACCEPA actuator (see (2))

the joint stiffness drops as the link approaches equilibrium

(q → q0) resulting in a decreasing stiffness torque τk and

some inherent stabilisation effect.

Turning again to Table I, however, we observe that the best

performance in terms of cost and settling time is achieved

by the optimal damping modulation scheme. Looking at the

behaviour generated with this approach (see Fig. 3), we see

that the device achieves faster convergence to the target, with

less overshoot. The optimal damping profile exploits the full

range of damping (see Fig. 3, top right) starting with low

damping during the initial phase of movement in order to
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Fig. 4. Joint position, velocity, equilibrium position, stiffness and damping
profiles for reaching with (i) optimal fixed (black) and (ii) optimal variable
damping (grey) for variable equilibrium position and spring pre-tension.
Results for fast (left column) and slow (right column) motor dynamics.

achieve a high initial velocity (see Fig. 3, bottom left), and

then switching to the maximum damping as the target is

approached in order to brake. The small overshoot results

in the damping being again lowered (in order to facilitate

return to the target), before finally settling to a low level

when the device has halted. The mentioned small overshoot

is due to our choice of cost function (16) which does not

take into account the end velocity. A short investigation, not

presented in here due to space restrictions, indicated that by

adding an appropriate terminal cost penalising velocity the

system is able to exploit variable damping and achieve the

best performance without overshooting.

B. Variable Damping and Speed of the Motor Dynamics

Having shown the benefit of optimal damping modulation

when the equilibrium position and spring pre-tension are

fixed, we now move on to investigate its effect when they

vary according to control. We therefore repeated the exper-

iment from the preceding section, this time allowing the

the equilibrium position and stiffness (pre-tension) to be

modulated. The latter were also optimised with respect to

(16), within servo command ranges u1 ∈ [−π/3, π/3] and

u2∈ [0, π/4]. The results are presented in the left column of

Fig. 4.

From Fig. 4, it can be observed that, when equilibrium

position and stiffness are allowed to vary in addition to

damping, having the ability to vary damping yields no

major improvement over having it fixed: the settling time

for variable damping is 0.36 s compared to 0.42 s for fixed

damping, and the costs are 0.0365 and 0.0368, respectively.
The reason for the similarity in performance lies in the

fact that, in this redundantly actuated system, the equilibrium

position and stiffness can be also be used to accelerate

and brake the system, even if the damping is fixed. When

presented with a constant damping command (Fig. 4, left

column, thin black line) the system is able to accelerate

by setting the position command beyond the target and

increasing the stiffness. Upon approaching the target, the

command for the position is brought back in order to brake.

When the system overshoots the procedure is repeated until

a stable level is achieved. In this way the variable stiffness

system can compensate for having fixed damping.

One of the problems with relying on such a strategy,

however, is that it assumes the ability to very rapidly vary the

equilibrium position and stiffness. In practice, this is not the

case with the MACCEPA-VD: while damping modulation

(i.e., modulating the PWM signal) is near instantaneous, the

servomotors employed in position and stiffness modulation

present much slower dynamics.

To test this more realistic case we repeated the experiment

with a more accurate model that incorporates these delays

in the servomotor response. Empirically we have found a

third-order filter model (as described in [23]) to be a good

model of the real servo responses. Repeating the optimisation

with this model of the MACCEPA-VD, we obtain the results

displayed in the right column in Fig. 4.

As can be seen, there is now a much bigger difference

in performance. While the use of the equilibrium position

and stiffness commands is the same, the slower motor

dynamics prevent the fixed damping system from achieving

the required braking for rapid settling at the target (ref.

Fig. 4, right column, thin black line). In contrast, the variable

damping system achieves comparable performance as with

the fast motor dynamics (settling time 0.40 s) and much

better than that of the fixed damping scheme (difference in

settling time is 0.52 s and improvement with respect to the

cost is cca. 8.7%).

C. Hardware Experiment

Finally, we report experiments verifying the effectiveness of

our proposed damping mechanism and show its performance

in a rapid reaching task with a hardware implementation of

the MACCEPA-VD.

Our implementation of the MACCEPA-VD consists of

two servomotors (Hitec HSR-5990TG) controlled with 50 Hz

PWM signals from a micro-controller (Atmel ATmega328).

Simultaneously, the micro-controller also controls an H-

bridge circuit (NSC:LMD18200, see Sec. III-A) that modu-

lates the effective resistance between the terminals of a DC

motor/gearbox unit (Maxon A-max 22/110125) - (see Fig. 1).

The servomotor positions are measured from their internal
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Fig. 5. System response (black) and model predictions (grey) for maximum
(d = 1), mid-range (d = 0.5) and minimum (d = 0) damping commands.

potentiometers and the joint angle is measured with a rotary

encoder (Melexis MLX90316GO).

1) Passive Response Test: We first verify the performance

of our variable damping mechanism by testing its passive

response with different damping commands. Specifically, we

conducted tests whereby the position and stiffness commands

were fixed (u1 = π/3 rad and u2 = π/2 rad) and the

actuator link was held (at rest) at q = 0 and then released.

The recorded joint trajectories are plotted in Fig. 5 for

damping commanded at the maximum (u3 = 1), mid-range

(u3 = 0.5) and minimum (u3 = 0) values. Overlaid are

predictions of a model based on a system-identification of

the device (for details of the latter, please see the Appendix).

As it can be seen, a significant damping range is achieved

with the proposed mechanism, approaching critical damping

at its maximum (Fig. 5, left) and an underdamped response

at its minimum (Fig. 5, right). There is also evidently a close

fit between the model and the hardware response at each of

the damping levels.

2) Rapid Reaching in Hardware: Finally, we present a

comparison of the reaching behaviour of the MACCEPA-

VD with fixed versus variable damping. In this experiment

the target is set to q∗ = 45◦ and the maximum reaching

duration T =1.5 s. ILQR was used to to devise the optimal

(open loop) command sequence for the three control inputs

(u1, u2, u3)
⊤, starting at rest with q = 0 rad and u1 =

u2 =0 rad. We compare the cases where the damping is (i)

fixed at the optimal constant value and (ii) allowed to vary

freely according to the optimisation. The results are plotted

in Fig. 6. (A video recording of the experiment is available

in the supplementary material).

As can be seen, (ref. Fig. 6, top left), there is a significant

difference in the ability of the system to reach and stabilise

at the goal, depending on whether or not the damping is

permitted to vary. In both cases we see that all of the

control degrees of freedom available are utilised (see Fig. 6,

motor positions). Nevertheless, only the system with variable

damping is able to stabilise within the 1.5 s time period. Note

also that, as predicted in Sec. V-B, the fixed damping scheme

tries to compensate by using the equilibrium position and

pre-tension motors to brake. However, in the real device, the

relatively slow dynamics of the servomotors prevent it from

doing so successfully.

VI. CONCLUSION

In conclusion, we have presented a mechanism for imple-

menting variable damping in variable physical impedance

devices. Our approach is based on exploiting electrical
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inductance effects in a DC motor to create a mechanical

damping effect. We have shown (i) how this effect can be

modelled with an electromechanical analysis and (ii) the

correspondence of our model to measured data collected

from a prototype actuator. We have outlined how variable

physical damping can be exploited through optimal control

in the context of rapid movement tasks. Simulation and

hardware experiments suggest a significant benefit of (i) vari-

able damping over fixed damping schemes and (ii) variable

damping over variable stiffness when considering the relative

speed at which the two can be modulated.

In future work, we intend to extend our experiments to il-

lustrate the role of damping in multi-link variable impedance

control and explore the relative benefits of using variable

damping versus variable stiffness in the context of energy-

optimal behaviour.

APPENDIX

While (9) gives an approximation of the damping torque

as a function of the equivalent circuit resistance Re, in our

realisation of the MACCEPA-VD we use PWM-modulated

switching to emulate variation of the resistance. This allows

the full damping range to be exploited, however, it causes

non-linearities in the relation between damping and the com-

manded duty cycle u3 due to various effects (e.g., transients

when switching between the open and closed configurations

of the circuit). We therefore use a data-driven approach for

modelling the damping function b = b(u3).
For this we set up a test rig (Fig. 7) to collect data about

the damping response of the motor used in the MACCEPA-

VD. Specifically, a DC motor (Maxon A-max 22/110125)

was interconnected with the damper motor and used to drive

the system as illustrated in Fig. 7 (inset). The equation of

motion of this system is given by

Jmθ̈ + (bmd + bm + be(u3))
︸ ︷︷ ︸

b(u3)

θ̇ = ndκτdId
︸ ︷︷ ︸

τmd

, (17)

where Jm is the moment of inertia of the interconnected

motor-gearbox system, b(u3) is the total damping of the
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Fig. 7. Damping measurement rig (inset) and model fit.

rig (including the mechanical damping of the two motors

b(0)=bmd+bm when u3 =0), and the additional electrically

generated damping be(u3) when u3 ∈ (0, 1]. On the right

hand side of the above equation there are the torques

generated by the driver motor2 according to (7).

During the experiments the driving motor is supplied with

a constant voltage Vd = 24V while the duty cycle of the

PWM signal u3 ∈ {0, 0.1, ...1} was changed by ten percent

at every 5 s. At each of these stages, the system quickly

converged to a steady rotation speed (θ̈ = 0). We measured

the rotational speed (θ̇ 6= 0) and the current of the driver

motor Id. Using this data, we can compute the total damping

bi(u3)=ndκτdIdi/θ̇i (based on (17) with Jmθ̈=0), for every
data point i∈{1, 2, ...N} for a given u3.

From these values the total mechanical damping of the

system is estimated as a mean of the computed damping

constants at u3 = 0: b̂(0) = 1
N

∑N
i bi(0). The latter is

then used to estimate the electrical damping effect on the

remaining data: b̂ei(u3) = bi(u3)− b̂(0). Finally, using the

quadratic scaling of the damping constant with the gear ratio

(see (9)), we define b̂m =n2/(n2+n2
d)b̂(0). The latter is used

to estimate the total damping coefficient as

b̂i(u3) = b̂m + b̂ei(u3). (18)

Using the estimates from (18) as data, we fit a model with

normalised Gaussian radial basis functions3 φ(u3)∈R
M ,

b̂(u3) = w⊤φ(u3) (19)

where w ∈ R
M is a vector of weights. In Fig. 7 we plot

the damping as a function of duty cycle u3 obtained through

this process.

Finally, re-inserting the damper motor into the

MACCEPA-VD, the joint damping torque is estimated as

τ̂b(q̇, u3) = −n2
q b̂(u3)q̇ (20)

where nq = 1.8 is the gear reduction between the link and

the motor shaft.

2The quantities: nd, κτd and Id define the gear ratio, torque constant,
and the current of the driver motor respectively.

3where φµ(u3) = Kµ(u3)/
PM

ν=1
Kν(u3), Kµ(u3) = exp(−(u3 −

cµ)2/2σ2) and cµ, µ=1 . . . M .
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