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Abstract— Autonomous legged robots will be required to
handle a wide range of tasks in complex environments. While
a lot of research has focused on developing their abilities
for periodic locomotion tasks, less effort has been invested
in devising generalized strategies for dynamic, non-periodic
movements. Motion design approaches are frequently enlisted
in the form of teleoperation or predefined heuristics in such
scenarios. We employ a realistic simulation of the hydraulically
actuated HyQ2Max quadrupedal system for investigations on
two distinctive tasks: rearing and posture recovery. We present
a whole-body optimization methodology for non-periodic tasks
on quadrupedal systems. This approach delivers solutions
involving multiple contacts without the need for predefined
feet placements. The results obtained show the potential of
optimization approaches for motion synthesis in the context
of complex tasks.

Index Terms— optimization, parametrized policy, multi-legged
systems, switching contacts, non-periodic movements, quadruped,
posture recovery, whole-body trajectory

I. INTRODUCTION

Modern robotic systems come in diverse configurations
depending on their function. As a consequence of the wide
range of applications, complex designs emerged to meet
their demands. Controlling such complex robotic systems
is a challenging task, due to the kinematic and actuation
redundancies and due to discontinuities in the dynamics,
introduced by switching contact conditions with the envi-
ronment.

Biological legged systems can achieve a variety of whole
body movements, in order to manipulate and traverse their
environment. They exercise control over their limbs with
significant versatility, compliance and energy efficiency. This
performance is achieved despite noticeable levels of delay
and noise affecting the biological motor systems [1]. When
transferring these skills to their robotic counterparts, most
research has focused on periodic tasks, frequently designed
with respect to a stability criterion, such as trotting and
walking.

A fully autonomous locomotion system will have to
complete a heterogeneous range of tasks. Some of these
frequent tasks in complex environments will require non-
periodic solutions which can be described as single-shot
movements. Examples in quadrupedal locomotion include
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rearing, overcoming an obstacle or gap, squat-jumping in
place, posture and fall recovery.

Currently, the majority of robotic systems operating in an
unsafe, disorganized and cluttered environment (e.g., search
and rescue missions, disaster response, nuclear decommis-
sioning) have to rely heavily on teleoperation in order to
achieve their objectives. Extending the autonomy level of
legged systems with such dynamic capabilities would ease
the workload of the human operators. Taking into consid-
eration the time-sensitive nature of some of these tasks,
the presence of a large motion library would facilitate the
improvement of the overall performance of the system.

Optimization and learning methodologies could deliver
solutions for such scenarios by using high-level task specifi-
cations, in the form of an evaluation criterion of the overall
performance of the emerging behavior.

In this work we present a whole-body optimization
methodology for non-periodic tasks on quadrupedal systems.
We encode the high-level goals using a task specific cost
function, which provides an intuitive way of defining the de-
sired outcome. Although tuning the relative weights of such
cost functions is a manual process, a heuristic encoding of
the same behavior would require a significantly higher effort.
The resultant trajectories and their performance indicate the
capability of the approach to deliver diverse sets of motions,
without prior definitions for the feet placements.

II. STATE OF THE ART

The relationship between learning and optimization has
been under analysis for a long time [2], [3]. However, it
is only in the recent past that their use has been extended
to high dimensional problems, common to modern multi-
degree-of-freedom robotics applications. The use of policy
based formulations, rather than value function based ones,
allows the integration of task/domain specific knowledge in
the pre-structure of the policy. This allows the optimization
methods to focus the search in promising areas of the space.

Various optimization approaches were proposed for deal-
ing with multiple contact events. In [4], on-line Model
Predictive Control (MPC) is combined with offline trajectory
optimization. The limit cycle of a periodic movement is
found by offline optimization with an infinite-horizon av-
erage cost, while on-line MPC is used to obtain an optimal
feedback control law. Another study [5], generalizes MPC
from the usual finite horizon (or receding horizon) setup
to a first-exit setting (i.e., a solution is found based on
the assumption of an exit state), which avoids dealing with
discontinuities in the on-line optimization phase.



The work in [6] proposes a locally optimal solution based
on MPC with smooth approximation of contact forces with-
out the need of switching dynamics. In [7], the contact forces
are explicitly included as constraints (using complementarity
conditions) and directly optimized, together with the tra-
jectories and control commands, using sequential quadratic
programming.

Approaches such as Policy Improvement with Path Inte-
grals (PI2) [8], based on stochastic optimal control princi-
ples, have been successful in generating optimal manipula-
tion solutions for compliant robotic arms [9]. In [10], PI2

is used on a combination of simulation and hardware based
optimizations, to synthesize a periodic hopping behavior for
a one-legged system, in a number of scenarios. Using itera-
tive optimal control, [11] delivers locally optimal solutions
for both periodic and non-periodic tasks on a quadrupedal
system.

The Covariance Matrix Adaptation (CMA) algorithm [12]
has been similarly used to generate whole body movements.
The study in [13] employs the CMA Evolution Strategy
(CMA-ES) to obtain an optimal fast walking solution for
both forward and sideways stepping. A preliminary study
on the potential of CMA-ES was presented in [14], where
the algorithm was used to obtain a rearing solution for the
HyQ quadrupedal robotic system. In [15] we conduct a pre-
liminary study for the HyQ2Max platform for similar tasks.
Likewise, in [16] the method is employed to achieve a squat-
jump movement, as well as various periodic gaits. The CMA
method was shown to provide improved performance, when
compared with state-of-the-art global search methods [17],
thus making it a method of choice for such investigations.

Another major challenge is solving such high-level tasks
without the use of pre-defined heuristics such as hard-coded
sequences or feet placements [18]. Trajectory optimization
for multi-legged robotic systems that operate in complex
environments is challenging, due to the varying number of
contacts. By allowing predefined elements, part of the burden
is alleviated, but at the same time the solutions obtained
might be suboptimal and their generality can also be affected.
Recently, the work in [19] has combined optimal control
and learning of movement primitives to generate gaits for
a humanoid system, but the work is restricted to open-loop
control.

In spite of the significant efforts in the area of fall avoid-
ance, comparatively little research has focused on developing
generalized self-righting techniques. Most work has revolved
around devising specific solutions for particular systems,
either at hardware design level (low center of mass, invertible
robots [20]) or defining embodiment specific strategies [21].
The work in [22] is attempting to develop a generalized
method for self-righting strategies, by analyzing and exploit-
ing the given robot structure. However, the results are still
restricted to small dimensional designs and do not address
multi-legged systems (the study focuses on a tracked one-
arm manipulator).

III. OUR METHODOLOGY

In our work we try to address this issue by providing a
generalized approach of delivering whole body movement
solutions. The high-level tasks are encoded using a cost
function, while trying to avoid pre-specifying how these
tasks should be solved (i.e., no predefined contact points
or sequences). As the accuracy of the model is a crucial
requirement, we choose to perform the optimization using
the whole body dynamics.

A. Robot description and System model

We use a realistic simulation of the 80 kg HyQ2Max [23]
quadrupedal robotic system with contacts. The platform was
designed as a light-weight, robust locomotion vehicle and
features 12 hydraulically actuated joints (controlled by a
hydraulic valve). Each limb has 3 actuators, defined as: HAA
(hip abduction/adduction), HFE (hip flexion/extension) and
KFE (knee flexion/extension). The corresponding kinematic
ranges are 90◦, 270◦, 165◦, respectively.

We model the behavior of the platform as a rigid body
system defined as:

M (q) q̈+C (q, q̇) q̇+g (q)+Dq̇ = JT
c λ (q, q̇)+ST τ , (1)

where q = [qB ,xB ,qJ ]
T is the vector containing the 6

DoF base state (orientation qB , position xB of the trunk’s
Center of Mass (COM)) and the joint angles qJ , with q̇, q̈ the
corresponding velocities and accelerations. The remaining
notations are defined as following: M is a symmetric positive
definite inertia mass matrix, C represents centrifugal and
Coriolis forces, g are the gravitational forces, D is the
viscous damping matrix. The contact forces λ exert their
effect on the system via the Jacobian Jc, while the joint
torques from the actuators τ are mapped via the selection
matrix S onto the states.

The state vector of the HyQ2Max system is defined as:

x = [q, q̇]
T
= [qB ,xB ,qJ , q̇B , ẋB , q̇J ]

T (2)

where q, q̇ are the vectors defined for (1), expressed in the
world frame. The definitions of the axes of the robot base
frame are depicted in Fig. 2 (left).

The choice of contact model is crucial for ensuring the va-
lidity of the resultant trajectory. When considering the choice
of models, there is always a trade-off between numerical
stability (smooth contact dynamics) and physical accuracy.

In the Open Dynamics Engine (ODE) [24] contact model,
any potential penetration errors are corrected at each time
step (some penetration threshold is tolerated in order to
remove jitter) which provides a good gradient of the dy-
namics. We employ Gazebo for our experiments, a well
established simulation environment for robotic applications,
which combines all the functionalities of ODE with an
increased user accessibility [25].

B. Optimization

In our investigation we use a CMA-ES based approach to
address dynamic non-periodic tasks for a quadrupedal robotic
system: rearing and posture recovery. This technique proved



effective in handling nonlinear, high-dimensional problems.
The method operates by generating and evaluating a set of
solutions at each iteration. The samples are extracted from a
multivariate Gaussian distribution. After their evaluation the
covariance matrix of the search distribution is adapted.

For complex robotic systems such as HyQ2Max, the main
challenge consists of determining the suitable joint motions
which achieve the desired movement for each given task. Us-
ing a direct optimization approach on the time-parametrized
joint or torque trajectories would involve an inconveniently
large search space. Hence, we use a parametrized policy to
encode these profiles, represented as a weighted average of
Gaussian kernels:

f(t) =

M∑
i=1

wiφi(t)/

M∑
i=1

φi(t), (3)

where wi are the weights associated with each kernel φi, i ∈
[1,M ], defined by mean µi and variance σ2 as in:

φi(t) = exp(− 1

2σ2
(t− µi)). (4)

The CMA algorithm is then used to optimize the weights
of all policies according to a task specific cost function (5),
applied to the whole body trajectory generated through (3) :

J = p(sT , ṡT ) +

∫ T

t=0

r(τt,qJ) dt, t ∈ [0, T ], (5)

where st = [qB ,xB ]
′ is the trunk state (i.e., s =

[xCOM , yCOM , zCOM , roll, pitch, yaw]
′) and τ t is the

set of 12 torque actuation commands at time t ∈ [0, T ].
The cost function consists of a running term r that seeks

to minimize the effort used for producing the motion and a
final cost p that evaluates the success of the motion according
to the task goals (desired final states (q∗B ,x

∗
B)) :

r(st, ṡt, τt) = Q3τt
2 +Q6[(qJ − qJmax))

2
∣∣∣
qJ>qJmax

(6)

+ (qJ − qJmin))
2
∣∣∣
qJ<qJmin

]

p(sT , ṡT ) = (qB(T )− q∗B)
′Q1(qB(T )− q∗B)

+ (xB(T )− x∗B)
′Q2(xB(T )− x∗B) (7)

where qJmin, qJmax are the upper and lower bounds on
the joint limits qJ , and Qi, i ∈ {1, 2, 3, 4} are the relative
weights associated with the terms for each individual task.

Since the CMA-ES is a local method, a starting policy
is required. In our experiments the policies are initialized
with values that maintain an initial pose (in the case of
rearing tasks) or as a direct interpolation between the initial
configuration and desired final pose (for posture recovery).
No specific footstep sequence information is enforced. We
apply a staged optimization approach, where preliminary
solutions are obtained using a relaxed cost (e.g., lower
weights for the joint limits term). The complexity of the
cost function is increased gradually, until the solution meets
all the desired requirements1. The procedure is based on

1We note that the robot model used incorporates a model of the actuator
dynamics, thus increasing the feasibility of the resultant behavior.
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Fig. 1: Example of a policy encoded as a weighted average
of Gaussian kernels: the means µi are equally spaced and
the variances are all fixed to 0.01 and the weights have been
sampled from [−1, 1].

optimization techniques, but the policy always starts from a
general non-specific point. Thus, the method can be viewed
as a learning approach, where a strategy is learned from
scratch, rather than an existing solution is improved.

An example of such a resultant policy is depicted in Fig.
1 where the M = 16 Gaussian kernels’ means are equally
spaced, the variances σ2 are all fixed to 0.01 and the weights
wi have been sampled from the interval [−1, 1]. In our
experiments we use 12 such representations, one for each
degree of freedom (DoF) of the quadrupedal system.

IV. SIMULATION RESULTS

We present the results obtained on a realistic simulation of
the HyQ2Max robotic platform, as detailed in the previous
section. All policies are encoded with a fixed set of M = 16
Gaussian kernels evenly spaced in the time interval between
0 to T seconds, while their variance σ2 is fixed to 0.01.
The number of samples for each task is determined by
the CMAS-ES algorithm, based on the number of decision
variables.

A. Rearing

In the rearing scenario, the quadrupedal system starts from
a neutral, four legged support pose (Fig. 2 (left)). During
the task execution the front legs push the torso upwards,
while the lower legs are supporting the body. This behavior
can serve as a preliminary stage for much more complex
maneuvers (e.g., obstacle traversing, transition to bipedal
posture). We note that in general such postures cannot be
reached in a static manner. To further reduce the complexity
of the problem, we exploit the task structure and impose the
same policy for the front and hind leg pairs, respectively.

The policy is initialized to values that maintain the default
pose of the system, in four legged support (Fig. 2, left). The
policy converged to a feasible solution within approximately
3002 trials (177 evaluation episodes with 17 samples per
episode), for an allocated time horizon of T = 0.3 s.
The values of the weights used for this task were Q1 =
103, Q2 = 102, Q3 = 0.1, Q4 = 1.

Fig. 2 (right) shows the final pose reached by the system
under the resultant policy, as imposed by the requirements



Fig. 2: HyQ2Max performing the rearing task in simulation
under the resultant policy. Left: initial pose. Right: final pose.

on the position and orientation of the trunk, encoded in the
terminal cost p. In the case of rearing we designated these
only as the desired torso pitch (−1.0472 rad) and CoM
(center of mass) height (90 cm), leaving the other dimensions
free for the optimization. The target pose was achieved with
an accuracy of 0.006 rad and 10 cm, the performance is
reflecting the relative ratios of the cost function weights.
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(a) Trunk trajectories (trunk CoM) of HyQ2Max performing
therearing task under the resultant policy.

Body position (left) and orientation (right) in the world frame.
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(b) Evolution of the cost for the rearing experiment
(158 evaluation episodes with 19 samples per episode)

Fig. 3: Joint trajectory solution for the HyQ2Max platform
in the rearing task: (a) Resultant trunk trajectory. (b) Cost
evolution.

The evolution of the position and orientation of the robot’s
trunk for the final trial are depicted in Fig. 3, alongside the
evolution of the cost throughout the CMAS-ES (Fig. 3-(b)).
The resultant individual joint policies (with the hind and front
leg pairs sharing the same policies) are displayed in Fig. 4.
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Fig. 4: The optimized joint trajectories for the rearing task
on the HyQ2Max platform. We impose the same policy for
the front and hind leg pairs. Each limb has 3 actuators : HAA
(hip abduction/adduction), HFE (hip flexion extension) and
KFE (knee flexion/extension).

B. Posture recovery

For the task of posture recovery we introduce a scenario
where the regular locomotion task fails, due to an unexpected
obstacle, and the robot finds itself in an unforeseen, fallen
state (Fig. 5, left). The task consists of returning the system
to an upright position, that allows the resuming of the
locomotion task. Unlike in the rearing scenario, due to the
nature of the task, the individual leg policies are independent
of each other.

The final cost p penalizes deviations from a target final
state of the robot’s trunk (in both linear and angular DoF).
The values of the weights used for this task were Q1 =
103, Q2 = 103, Q3 = 0.1, Q4 = 1. The desired
final pose was defined as a neutral orientation (q∗B =
(roll, pitch, yaw) = (0, 0, 0)), while the position was
specified only by CoM (center of mass) height (61 cm),
leaving the other dimensions free for the optimization.

The policy converged to a feasible solution within approxi-
mately 3002 trials (158 evaluation episodes with 19 samples
per episode), with a time horizon T = 0.3 s. The desired
pose was achieved with an accuracy of 0.001 rad and 2 cm.
As in the previous scenario, the performance is reflecting the
relative ratios of the cost function weights.

Fig. 5 (middle) shows an intermediary pose reached by
the system under the resultant policy. Fig. 5 (right) depicts
the final pose after the policy is executed and the current
goal is maintaining the pose. The trajectories of the position
and orientation of the robot’s trunk in the final solution are
depicted in Fig. 6 (a). The evolution of the cost function
from initial plan to the delivered solution is depicted in Fig.
6 (b). The resultant individual joint policies are displayed in
Fig. 7.



Fig. 5: HyQ2Max performing the posture recovery task in simulation. Left: initial pose (unexpected fall, ending up partially
on an obstacle). Middle: intermediary pose under the resultant policy. Right: final pose (after the policy is executed and the
current goal is maintaining the pose).
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(a) Trunk trajectories (trunk CoM) of HyQ2Max performing the
posture recovery task under the resultant policy.
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(177 evaluation episodes with 17 samples per episode)

Fig. 6: Joint trajectory solution for the HyQ2Max platform
in the posture recovery task: (a) Resultant trunk trajectory
(position and orientation). (b) Cost evolution.

The presented results suggest that the obtained behaviors
could be transferred to the real hardware, which is what
we are focusing on implementing in the near future. By
enforcing high gains on the torque and joint limits’ costs,
the feasibility of the whole body trajectory generated can
be achieved. At the same time we are aiming to expand
the range of posture recovery and extend the approach to
full body self-righting. A video of the presented results and
behaviors is available in the additional material or at the
following link.2

V. CONCLUSION

In this work we present a whole body optimization
methodology for non-periodic dynamic movements on

2https://youtu.be/irZTaTgwdoE
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Fig. 7: The optimized joint trajectories for the posture
recovery task on the HyQ2Max platform. (LF - left front,
RF - right front, LH - left hind, RH - right hind).

quadrupedal systems. The approach is able to deliver tra-
jectory solutions which involve multiple contacts, without
any predefined feet placement heuristics (e.g., contact points,
timing or order of succession).



Using a realistic simulation of the hydraulically actuated
HyQ2Max quadrupedal system we investigate two distinc-
tive tasks: rearing and posture recovery. Task specific cost
functions encode the high-level goals in each scenario. We
employ a generalized form for the cost function, while
adjusting the relative gains of each term according to the
current task. Although tuning the relative weights of such
cost functions is a manual process, a heuristic encoding of
the same behavior would require a significantly higher effort.
By exploiting the whole body model in order to obtain the
solution, the optimization does not have to depend upon
heuristics and can overcome errors caused by the use of
simplified models. The resultant trajectories and the accuracy
with which the user defined goals are achieved are reflecting
the relative ratios of the weights on the individual cost
function terms.

VI. FUTURE DIRECTIONS

The results depicted in this work showcase the possibilities
that optimization can offer to motion synthesis for complex,
non-periodic tasks. For example, the goal of a rearing motion
can be to reach the basin of attraction of a balancing con-
troller, keeping the quadruped upright. In future work we aim
to transfer the obtained behaviors onto the hardware system,
while also expanding the range of scenarios addressed.

As the future task of the system was beyond the scope
of this investigation, certain elements, (e.g., the allocated
time and final velocities of the trunk) were not included
in the optimization goals. We aim to extend the approach
to deliver an optimal duration for the given task, while
the final pose is fully determined, based on subsequent
requirements. To increase the autonomy of the system under
the suggested approach, real-time sensory information from
the environment and a methodology for determining the ideal
final pose of the policy will have to be integrated. In the
long term we aim to develop a general tool for generating
optimal dynamic whole-body motions that are not necessarily
periodic in nature.

The speed of computing such solutions might not al-
ways allow for on-line optimization using conventional ap-
proaches. Machine learning methods (in conjunction with
an adequate motion library) could be employed to speed
up the solution delivery time. In [26] the solutions of an
optimization task are used to guide the learning of neural net-
work controllers, for a variety of locomotion tasks on generic
robotic models in simulation. Such dynamic movements will
serve in complementing and extending the capabilities of
robots with arms and legs.
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