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Abstract— We address the optimal control problem of robotic
systems with variable stiffness actuation (VSA) including
switching dynamics and discontinuous state transitions. Our
focus in this paper is to consider tasks that have multiple phases
of movement, contacts and impacts with the environment. By
modelling such tasks as an approximate hybrid dynamical
system with time-based switching, we develop a systematic
methodology to simultaneously optimize control commands,
stiffness profiles and temporal aspect of the movement such
as switching instances and total movement duration. Numerical
evaluations on a simple switching system, a realistic brachiating
robot model with VSA, and a hopper with variable stiffness
springs demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Towards the aim of achieving highly dynamic and flex-

ible movements in close interaction with the environment,

recently, a number of various variable stiffness actuators

(VSAs) have been developed (see [1] for reviews). VSAs are

composed of mechanically adjustable compliant mechanisms

with the capability of simultaneous modulation of stiffness

and output torque. In previous studies, benefits of variable

stiffness actuation such as energy storage capability in ex-

plosive movements have been demonstrated, leading to an

improvement of task performance [2], [3], and exploitation

of passive dynamics in periodic movements [4], [5] and

in brachiation tasks [6]. However, traditional approaches

have focused on the optimal control formulation over a

predetermined time horizon with smooth, continuous plant

dynamics. When considering tasks that consist of multiple

phases of movements including switching dynamics and

discrete state transition (arising from interaction with the

environment), a typical formulation with a first-exit strategy

would result in a suboptimal solution.

In this paper, we investigate spatio-temporal stiffness opti-

mization in such problems in order to exploit the benefits of

variable stiffness actuation. Locomotion and juggling dynam-

ics with intermittent contacts and impacts are often modelled

as hybrid dynamical systems which consist of (multiple

sets of switching) continuous dynamics and discontinuous

state transition determined by switching surfaces (state based

switching) [7]–[10]. From a control theoretic perspective, a

significant effort has been made to address optimal control

problems of a various class of hybrid systems [11]–[15].

However, illustrative examples in the control literature are

confined to relatively low-dimensional and simple dynamical

systems. Optimization for such hybrid dynamics is non-

trivial especially in the case of state-based switching since
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it forms a multipoint boundary value problem with sev-

eral interior-point constraints [16]. Instead of using hybrid

dynamics modelling, different optimization approaches to

dealing with multiple contact events have been proposed,

e.g., model predictive control with smooth approximation

of contract dynamics [17] and direct trajectory optimization

methods by nonlinear programming [18]. In these studies,

contact forces are explicitly included as constraint forces

with inequality constraints, whereas in hybrid dynamics

representation, contact events are simply modelled as instan-

taneous discrete state transition.

Here, we suggest an approximate approach to the hy-

brid optimal control problem, where the multiple phases of

movement are modelled as a time-based switching hybrid

dynamics assuming that the sequence of switching is known.

In this paper, we address the following aspects:

1) nonlinear time-based switching dynamics with contin-

uous control input

2) nonlinear discrete state transition

3) realistic plant dynamics with a VSA model

4) composite cost function to describe a task with multi-

phase movements

5) optimization of control command and stiffness across

multiple phases

6) optimization of switching instances

7) optimization of final time (total movement duration)

To our knowledge, while there exists previous work sepa-

rately addressing some of the specific points above [14], [15],

[19]–[21], we have yet to find a study which has considered

all these issues.

The rest of this paper is organized as follows: First, a

hybrid optimal control problem with time-based switching is

formulated. Next, we present an iterative solution method by

extending the iterative linear quadratic regulator (iLQR) al-

gorithm [22] in order to incorporate switching dynamics and

discrete state transition. In addition, we present a temporal

optimization algorithm for hybrid dynamics. The proposed

algorithm provides a locally optimal feedback control law.

In the evaluation, we start by showing a simple example

with a linear switching system, highlighting the need for

multi-phase composite optimization. Then, we consider plant

dynamics with VSA including realistic actuator dynamics

model with switching dynamics and discrete state transition

for a brachiating robot. In addition, the proposed algorithm is

applied to find an appropriate flight/stance time and optimize

the hip and leg stiffness in the hopping robot with multiple

phases, highlighting improved robustness and efficiency.
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II. PROBLEM FORMULATION

A. Hybrid Dynamics with Time-based Switching and Dis-

crete State Transition

Consider a class of hybrid systems

ẋ = fi(x,u), i ∈ I = {1, 2, · · · ,M} (1)

x(T+

j ) = ∆ij−1,ij (x(T−

j )) (2)

where fi : R
n × R

m → R
n is the i-th subsystem, x ∈ R

n

is a state vector, u ∈ R
m is a control input vector and I is

the set of indices for subsystems [15]. When the dynamics

switch from subsystem ij−1 to ij at t = Tj , we assume

that instantaneous discrete (discontinuous) state transition is

introduced, which is denoted by a map ∆ij−1,ij in (2) for

j = 1, · · · ,K. x(T+

j ) and x(T−

j ) denote the post- and pre-

transition states, respectively.

When the finite number of switching is given as K, define

the timed switching sequence σ in [T0, Tf ] as [15]

σ = ((T0, i0), (T1, i1), · · · , (TK , iK)) (3)

where T0 ≤ T1 ≤ · · · ≤ TK ≤ Tf = TK+1 (i.e.,

monotonically increasing switching instances) and ij ∈ I
for j = 0, · · · ,K. This means that at t = Tj , subsystem

switches from ij−1 to ij and subsystem ij is active for Tj ≤
t < Tj+1. In this paper, the sequence of switching is assumed

to be given, e.g., (1, 2, · · · ,K,K + 1) or (1, 2, 1, 2, · · · ).
Fig. 1 depicts a schematic diagram of a hybrid system we

consider in this paper.

Note that with the definition of the switching sequence

above, the hybrid dynamics we consider can be equivalently

described in a more intuitive and compact representation

[23]:

ẋ = fij (x,u), Tj ≤ t < Tj+1 (4)

x(T+

j ) = ∆ij−1,ij (x(T−

j )) (5)

where j = 0, · · · ,K for (4) and j = 1, · · · ,K for (5).

B. Robot Dynamics with Variable Stiffness Actuation

Consider the robot dynamics with variable stiffness actu-

ation

Mi(q)q̈+Ci(q, q̇)q̇+ gi(q) +Diq̇ = τ i(q,qm) (6)

q̈m + 2αiq̇m +α2
iqm = α2

iu (7)

where i denotes the i-th subsystem, q is the joint angle

vector, qm is the motor position vector of the VSA, M is

the inertia matrix, C is the Coriolis term, g is the gravity

vector, D is the viscous damping matrix, and τ are the joint

torques from the variable stiffness mechanism. (6) denotes

the rigid body dynamics of the robot and (7) denotes the

servo motor dynamics in the variable stiffness actuator. In

(7), α determines the bandwidth of the servo motors and

u is the motor position command [2]. We assume that the

range of control command u is limited between umin and

umax.

In this paper, we consider a VSA model in which the joint

torques are given in the form

τ (q,qm) = AT (q,qm)F(q,qm) (8)

T1 T2

x
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J = J1 + · · ·+ JK+1

switching instances
final time

cost

composite cost:
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· · · · · ·
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· · · · · ·

T0

x
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Fig. 1. A hybrid system with time-based switching dynamics and discrete
state transition with a known sequence. The objective is to find an optimal
control command u, switching instances Ti and final time Tf which
minimizes the composite cost J = J1 + · · ·+ JK+1.

where A is the moment arm matrix and F is the forces by

the elastic elements [2] and the joint stiffness is defined as

K = −
∂τ

∂q
. (9)

In the state space representation (1), the plant dynamics

are formulated as

ẋ = fi(x,u) (10)

where

fi=







x2

M−1

i (x1)(−Ci(x1,x2)x2−gi(x1)−Diẋ2+τ i(x1,x3))
x4

−α
2
ix3 − 2αix4 +α

2
iu







(11)

and x = [ xT
1 , x

T
2 , x

T
3 , x

T
4 ]T =[ qT , q̇T , qT

m, q̇
T
m ]T .

C. Movement Optimization of Multiple Phases

We consider the composite cost function

J = φ(x(Tf )) +

K
∑

j=1

ψj(x(T−

j )) +

∫ Tf

T0

h(x,u)dt (12)

to describe the full movement with multiple phases, where

φ(x(Tf )) is the terminal cost, ψj(x(T−

j )) is the via-point

cost at the j-th switching instance and h(x,u) is the running

cost.

In our previous work [6], we have optimized each cost

function Ji for each phase separately in a sequential manner

to optimize multiple sequence of swing locomotion in a robot

brachiation example, where

Jj = ψj(x(T−

j )) +

∫ Tj

Tj−1

h(x,u)dt for j = 1, · · · ,K

(13)

and

JK+1 = φ(x(Tf )) +

∫ Tf

TK

h(x,u)dt (14)

using the terminal state for the j-th sequence as the initial

condition for the (j+1 )-th sequence with the discrete state

transition (2). In this case, each cost function can be (locally)

optimized, however, the total cost J =
∑K+1

j=1
Jj may be

suboptimal.

For given plant dynamics (4) and state transition (5), the

optimization problem we consider is to a) find an optimal



feedback control law u = u(x, t) which minimizes the com-

posite cost (12) and b) simultaneously optimize switching

instances T1, · · · , Tk and the final time Tf as well. Note that

in previous studies on optimization of switching instances,

the final time is fixed.

III. SPATIO-TEMPORAL OPTIMIZATION WITH

DISCONTINUOUS STATE TRANSITIONS

In this section, first we extend iLQR—an approximate

optimal feedback control (OFC) solver (similar arguments

apply for the stochastic equivalent iLQG [22]) in order

to incorporate timed switching dynamics with discrete and

discontinuous state transitions. Then, we present a temporal

optimization algorithm to optimize the switching instances

and the total movement duration.

A. Optimal Control of Switching Dynamics and Discrete

State Transition

In brief, the iLQR method solves an optimal control

problem of the locally linear quadratic approximation of the

nonlinear dynamics and the cost function around a nominal

trajectory x̄ and control sequence ū in discrete time, and

iteratively improves the solutions.

In order to incorporate switching dynamics and discrete

state transition with a given switching sequence σ in (3), the

hybrid dynamics (1) and (2) are linearized in discrete time

around the nominal trajectory and control sequence as

δxk+1 = Akδxk +Bkδuk (15)

δx+

kj
= Γkj

δx−

kj
(16)

Ak = I+∆tj
∂fij
∂x

∣

∣

∣

x=xk

, Bk = ∆tj
∂fij
∂u

∣

∣

∣

u=uk

(17)

Γkj
= ∂∆

ij−1,ij

∂x

∣

∣

∣

x=x
−

kj

(18)

where δxk = xk − x̄k, δuk = uk − ūk, k is the discrete

time step, ∆tj is the sampling time for the time interval

Tj ≤ t < Tj+1, and kj is the j-th switching instance in the

discretized time step.
The composite cost function (12) is locally approximated

in a quadratic form as

∆J = δx
T
Nφx+

1

2
δx

T
NφxxδxN

+

K
∑

j=1

(

(δx−

kj
)Tψj

x
+
1

2
(δx−

kj
)Tψj

xx
δx

k
−

j

)

+

N
∑

k=1

(

δx
T
k hx + δu

T
k hu

+
1

2
δx

T
k hxxδxk+

1

2
δu

T
k huuδuk+δukhuxδxk

)

∆tj (19)

and a local approximation of the optimal cost-to-go function

is defined as

vk(δxk) =
1

2
δxT

k Skδxk + δxT
k sk. (20)

For the dynamics (15), the cost-to-go parameters in (20),

Sk, sk are updated with a modified Riccati equations1 (see

1At the final time k = N , SN = φxx and sN = φx.

Algorithm 1 Complete optimization algorithm for hybrid
dynamics with temporal optimization

1: Input:

• Timed switching plant dynamics fi (1), discrete state
transition ∆ij−1,ij (2) and switching sequence σ (3)

• Composite cost function J (12)

2: Initialize:

• Nominal switching instance and final time
T1, · · · , TK and Tf and corresponding discrete
sampling time ∆t0, · · · ,∆tK as in (29) and (30)

• Nominal control sequence ū and corresponding x̄

3: repeat
4: repeat
5: Optimize control sequence ū:

• Obtain linearized time-based switching dynamics
(15) and state transition (16) around x̄ and ū in
discrete time with current ∆tj

• Compute quadratic approximation of the com-
posite cost (19)

• Solve local optimal control problem to obtain δu
(21)

• Apply δu to the linearized hybrid dynamics (15)
and (19)

• Update nominal control sequence ū ← ū + δu,
trajectory x̄ and cost J

6: until convergence
7: Temporal optimization: update ∆tj:

• Update the vector of temporal scaling factor β and
corresponding sampling time ∆t0, · · · ,∆tK in (27)
via gradient descent.

• Obtain corresponding switching instances Tj (29)
and final time Tf (30)

8: until convergence
9: Output:

• Optimal feedback control law u(x, t): feedforward
optimal control sequence uopt, optimal trajectory
xopt(t) and optimal gain matrix Lopt(t):
u(x, t) = uopt(t) + Lopt(t)(x(t)− xopt(t))

• Optimal switching instance T1, · · · , TK and final
time Tf

• Optimal composite cost J

[22] for details) and the local control law δuk of the form

δuk = lk + Lkδxk (21)

is obtained from the Bellman equation

vk(δxk) = minδu{hk(δxk, δuk) + vk+1(δxk+1)} (22)

by substituting (15) and (20) into the equation (22), where

hk is the local approximation of the running cost in (19). At

the instance of discrete state transition k = kj , the following

cost-to-go parameter update is added (cf. [14], [15]):

S−

kj
= ψj

xx + ΓT
kj
S+

kj
Γkj

(23)

s−kj
= ψj

x + ΓT
kj
s+kj

(24)

which is derived from the Bellman equation

vkj
(δx−

kj
) = ψ

j
kj
(δx−

kj
) + vkj

(δx+

kj
) (25)
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Fig. 2. Optimization results of the linear switching system example. Left: position x1, via-points and final target are marked in circles. Center: velocity
x2. Right: control command u.

at k = kj , where ψ
j
kj
(δx−

kj
) is the local approximation of

the via-point cost (19).
Once we have a locally optimal control command δu, the

nominal control sequence is updated as ū← ū+ δu. Then,

the new nominal trajectory x̄ is computed by running the

obtained control ū and the above process is iterated until

convergence.

B. Temporal Optimization

In our prior work [24], we proposed a temporal optimiza-

tion algorithm to simultaneously optimize the control com-

mands and temporal parameters by introducing a mapping

β(t) from the real time t to a canonical time t′ as

t′ =

∫ t

0

1

β(s)
ds, (26)

where β(t) is then optimized to scale the temporal aspect

of the movement. We have applied this [4], [6] to optimize

the frequency of the periodic movement and the movement

duration of swing locomotion in a brachiation task. In these

problems, we discretized (26) with an assumption that β(t)
and ∆t are constant throughout the movement as ∆t′ =
1

β
∆t. In order to optimize the switching instances and the

total movement duration, in this work, we introduce a scaling

parameter and sampling time for each duration between

switching as (cf. (17) and (19))

∆t′j =
1

βj
∆tj for Tj ≤ t < Tj+1 (27)

where j = 0, · · · ,K. By optimizing the vector of temporal

scaling factors β = [ β0, · · · , βK ]T via gradient descent

β ← β − η∇βJ (28)

where η > 0 is a learning rate, we can obtain each switching

instance

Tj+1 = (kj+1 − kj)∆t
′

j + Tj (29)

and total movement duration

Tf =
K
∑

j=0

(kj+1 − kj)∆t
′

j + T0 (30)

where k0 = 1 and kK+1 = N . In the complete optimization,

computation of optimal feedback control law and temporal

scaling parameter update are iteratively performed until con-

vergence in an EM-like (expectation-maximization) manner.

A pseudocode of the complete algorithm is summarized in

Algorithm 1.

TABLE I

COMPARISON OF THE RESULTS OF THE LINEAR SWITCHING SYSTEM.

(T1, T2, Tf ) (sec) cost J
(1) ind. no time opt. (1, 2, 3) 41.7
(2) ind. time opt. (3.07, 4.57, 5.98) 8.31
(3) complete, no time opt. (1, 2, 3) 34.4
(4) complete, time opt. (1.43, 2.65, 4.05) 6.59

IV. EVALUATIONS2

A. Linear Switching System

In order to illustrate the effectiveness of the proposed

approach, first, we consider the following example of a

hybrid linear system with linear discrete state transition:

ẋ = Aix+Biu (31)

x+ = Γx− (32)

where x = [ x1, x2 ]T , Ai =

[

0 1
−ki 0

]

, Bi =

[

0
1

]

,

k1 = 1, k2 = 2, k3 = 5 and Γ =

[

1 0
0 0.5

]

. The subsystem

switches with discrete state transitions from i = 1 to i = 2
at t = T1 and from i = 2 to i = 3 at t = T2. The cost

function to be minimized is

J = (x(Tf )− x∗

f )
TQTf

(x(Tf )− x∗

f )

+

2
∑

j=1

QTj
(x1(T

−

j )− x∗1,j)
2 +

∫ Tf

0

Ru2dt (33)

where x∗

f = [ −5, 0 ]T is the desired position and velocity

at t = Tf , x∗1,1 = 2 and x∗1,2 = 5 are the desired

positions at the via-points. The initial states are chosen as

x0 = [ 0, 0 ]T . The weights in the cost are given as

QTf
= diag(500, 500), QTj

= 500 and R = 0.1. Note that

at the via-points, the velocity is not penalized, but at the end

point, both the position and the velocity are specified. We

find an optimal control command u, switching instances Tk
and the movement duration Tf . The initial switching times

and movement duration are chosen as T1 = 1, T2 = 2 and

Tf = 3.

Table I summarizes the comparison among the following

four cases:

1) sequential individual movement optimization without

temporal optimization

2) sequential individual movement optimization with tem-

poral optimization

2A video clip highliting the results is available at
http://youtu.be/dUhL36b4eWg



Transition at handhold

Hand 2 grasping
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Fig. 3. Hybrid dynamics modelling of a brachiating robot with asymmetric
structure. The dynamics switches at the transition from a handhold to the
next with a discrete state mapping.

3) complete movement optimization without temporal op-

timization

4) complete movement optimization with temporal opti-

mization

In the sequential individual movement optimization, each

segment of the movement to the via-point is individually

optimized in a sequential manner followed by the next move-

ment starting from the end-point of the previous movement.

In the complete movement optimization, the entire movement

over multiple via-points including switching dynamics and

discrete state transition is optimized from the initial state to

the end target. Fig. 2 shows the optimized trajectories and

control command. The results in Table I implies that se-

quential optimization resulted in a sub-optimal solution with

a higher cost compared to complete movement optimization.

Furthermore, when temporal optimization is employed, the

cost is significantly reduced, which suggests the effectiveness

of the proposed approach.

B. Spatio-temporal Optimization of Multiple Swings in

Robot Brachiation

In this section, we evaluate the effectiveness of the

proposed approach in robot brachiation that incorporates

switching dynamics and multiple phases of the movement

in a realistic VSA actuator model. Brachiation is a form of

swing locomotion from handhold to handhold. For successful

task execution by exploiting the benefits of VSA and passive

dynamics, the spatio-temporal aspect of joint stiffness and

control command needs to be optimized.
1) Robot Dynamics with Variable Stiffness Actuator

Model: We consider a two-link underactuated brachiating

robot with a MACCEPA variable stiffness actuator model

[6]. The robot dynamics (6) is given by

Mi(q)q̈+Ci(q, q̇)q̇+gi(q)+Diq̇ =

[

0
τ(q,qm)

]

(34)

where only the second joint has actuation and q =
[ q1, q2 ]T . The joint torque with the MACCEPA model

[25] in (8) is given by

τ =
BC sin(qm1 − q2)

γ
F (35)

where qm = [ qm1, qm2 ]T are the servo motor positions in

the VSA model, F is the spring tension

F = κ(l − l0), (36)
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Fig. 4. (a) Optimized movement of the robot. (b) Comparison of joint
trajectories and servo motor positions between complete optimization with
temporal optimization and individual movement optimization without tem-
poral optimization. Thick blue lines: complete optimization with temporal
optimization. Thin gray lines: individual optimization without temporal
optimization.

γ =
√

B2 + C2 − 2BC cos (qm1 − q2) and l = γ + rdqm2.

We assume that the robot has a generic asymmetric structure

in the dynamics (unequal mass and/or link length). Hence,

the effective model switches between i = 1 and i = 2
interchangeably at the switching instance Tk when the robot

grasps the bar as σ = ((T0, 1), (T1, 2), (T2, 1), ...) (see

Fig. 3).
To formulate optimization, we use the state space represen-

tation in (11). At the transition at handhold, an affine discrete

state transition x+ = ∆(x−) = Γx− + γ is introduced to

shift the coordinate system for the next handhold and reset

the joint velocities of the robot to zero, which is defined as

Γ = diag(Γ1, · · · ,Γ4) (37)

where

Γ1=

[

1 1
0 −1

]

,Γ2=

[

0 0
0 0

]

,Γ3=Γ4=

[

−1 0
0 1

]

(38)

and γ = [ −π, 0, · · · , 0 ]T . Note that in this example, we

have ∆ = ∆1,2 = ∆2,1.
2) Optimization Results: We consider a brachiating task

with multiple phases of the movement as follows: First, the

robot swings up from the suspended posture to the target at

d1 = 0.45 (m) and subsequently moves to the target located

at d2 = 0.4, d3 = 0.42 and d4 = 0.44. The composite cost

function to encode this task is given by

J=(y(Tf )− y∗

f )
TQTf

(y(Tf )− y∗

f )

+
3

∑

j=1

(y(T−

j )− y∗

j )
TQTj

(y(T−

j )− y∗

j )

+

∫ T

0

(

uTR1u+R2F
2
)

dt+ wTT1 (39)
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ment optimization without temporal optimization (gray line) as a measure
of control effort required to complete the task.

where y = [ r, ṙ ]T ∈ R
4 are the position and the velocity

of the gripper in the Cartesian coordinates measured from

the origin at current handhold, y∗ is the target values when

reaching the target y∗ = [ r∗, 0 ]T and F is the spring

tension in the VSA. Note that this cost function includes

the time cost wTT1 for the swing up maneuver. The term in

the running cost uT
1 R1u1 is added for regularization with a

small choice of R1.

Fig. 4 (a) shows the sequence of the robot movement

optimized by the proposed algorithm including temporal

optimization. The optimized switching instance and total

movement duration are T1 = 2.073, T2 = 2.852, T3 =
3.463 and Tf = 4.230 (sec). Fig. 4 (b) shows comparison

between complete movement optimization with temporal

optimization (thick blue lines) and sequential individual

movement optimization without temporal optimization (thin

gray lines). Note that at the instance of switching denoted

by vertical lines, discrete state transition can be observed

in these trajectories due to the definition of the coordinate

transformation. The cost with the complete optimization with

temporal optimization is J = 33.10 while the cost with

individual optimization without temporal optimization (T1 =
2.0, T2 = 2.6, T3 = 3.1 and Tf = 3.75 are fixed) is J =
94.65. Fig. 5 shows the cumulative running cost for these two

cases as a measure of the control effort required to complete

the task. The result demonstrates that the proposed method is

able to find optimal control commands and temporal aspect

of the movement resulting in lower cost.

C. Hopping Robot Dynamics with VSA

In this section, we present our results on a simplified

model of a one-legged hopping robot with variable stiffness

actuators. We augment the hopping robot model in [27] with

variable compliance elements in the hip and the leg actuators.

In this hopping example, we demonstrate the feasibility

of the proposed approach on an increasingly challenging

task that includes switching of different mode of dynamics

(flight and stance) and more complex discontinuous state

transition arising from impact at touch-down. Additional

difficulty in this task is to find the flight and stance time

for successful task execution which is highly restricted by

the underactuated nature of the intrinsic dynamics and the

desired task specifications.

The objective of optimization is to find appropriate leg

and hip stiffness to exploit the passive dynamics and also

the required flight and stance time during one locomo-

tion cycle in a periodic movement based on a time-based

switching approximation. The obtained controller is then
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Fig. 6. Hybrid dynamics of a hopping robot model and locomotion phases
during one cycle

TABLE II

COMMANDS FOR THE HOPPING ROBOT MODEL

Command Meaning Unit
u1 torque applied at the hip Nm
u2 force applied in the leg N
u3 hip joint stiffness Nm/rad
u4 leg stiffness N/m

applied to achieve multiple hopping cycles of locomotion on

event based switching dynamics. Robustness of the obtained

optimal feedback controller will be evaluated by applying

external disturbances during the multiple hopping cycles to

demonstrate the feasibility of the optimized controller.
1) Dynamics model of a hopping robot: The hopping

dynamics switch between the flight phase and stance phase

(with i = 1: flight and i = 2: stance) at the switching

instance Tj when either touch-down or lift-off conditions

are met. The configuration vector of the system is defined

as q = [xcom, ycom, θ, φ, r]
T (see Fig. 6). The general form of

the flight and stance dynamics can be given by

Miq̈i +Ci(qi, q̇i)q̇i + gi(qi) = τ i(qi,ui) (40)

where q1 = [xcom, ycom, θ, φ]
T and q2 = [θ, φ, r]T are

the partial configuration vector for the flight and stance

phase, respectively (for the specific form of the dynamics

in each phase, please refer to [26], [27]). τ 1(q,u) =
[0, 0,−τhip, τhip]

T and τ 2(q,u) = [−τhip, τhip, τleg]
T are the

VSA torque/force applied to each degree of freedom where

τhip(q,u) = u1 − u3(φ− θ) (41)

τleg(q,u) = u2 − u4(r − r0) (42)

and u = [u1, u2, u3, u4]
T is the control command vector

defined as in Table II. The range of the control and stiffness

is limited as ui,min ≤ ui ≤ ui,max.
For the purpose of optimization, the dynamics will be

formulated in a state space representation of the form of

ẋ = fi(x,u) as in (10) with the full state vector x =
[ qT , q̇T ]T and q = [xcom, ycom, θ, φ, r]

T . Note that in this

hopping robot, we consider a simplified parallel elastic VSA

model with direct force/torque and stiffness control, which

does not include the motor dynamics (7).
The discontinuous impact map at touch-down is defined

as

x+ = ∆1,2(x−) =

[

I 0

0 Λ(q)

]

x− (43)

where x = [qT , q̇T ]T , q+ = q− and q̇+ = Λ(q)q̇−. The

matrix Λ(q) is the transition map between the pre-impact to



post-impact velocities based on a rigid body collision model

[8], [9]. The specific form of the velocity transition map

is given in the study of passive running with an additional

analysis of energy dissipation at impact [27]. At lift-off, the

velocity of the leg is reset to zero as ṙ = 0 at r = r0.

2) Design of Composite Cost Function: In this paper,

we consider a task of achieving periodic movement of

continuous hopping which is a repetition of one hopping

cycle while exploiting the passive dynamics and the benefits

of stiffness modulation. For this purpose, first, we design

a composite cost function for one hopping cycle including

both the flight and stance phases and the desirable touch-

down condition. Then, the obtained controller is applied to

achieve multiple cycles.
Consider the following cost function:

J=(x(Tf )−x0)
T
QTf

(x(Tf )−x0)+Ψ(x(T−

1 ))+

∫ Tf

0

u
T
Ru dt

(44)

where QTf
is a positive semi-definite matrix and R is a

positive definite matrix. The purpose of the first term is to

achieve periodicity of the trajectory where x0 denotes the

initial state. The second term consists of two criteria:

Ψ(x(T−

1 )) = QT1,1(y
−

foot
− 0)2 +QT1,2(µ

−)2 (45)

where QT1,1 and QT1,2 are positive weights. The term

QT1,1(y
−

foot − 0)2 penalizes the height of the foot from

the ground y = 0 to approximately encode the touch-down

condition in a time-based formulation. Note that in order to

minimize this term, it is important to find an appropriate

flight time T1 as the trajectory of the center of mass cannot

be directly controlled in the flight phase for a given initial

lift-off condition. The term QT2,2(µ
−)2 minimizes energy

loss at touch-down where µ− is called the energy dissipation

coefficient [27]

µ−= ẋ−
com

cos θ−+ẏ−
com

sin θ−+r0θ̇
−= ẋ−

foot
cos θ−+ẏ−

foot
sin θ−

(46)

motivated from the study of passive running [27] to find an

appropriate leg angle and foot velocity relative to the ground

at touch-down. Note that if µ− = 0, there is no energy loss

at impact. In the running cost, we minimize the control effort

u1 and u2 while small weights are used for penalizing the

magnitude of stiffness u3 and u4 for regularization.

The initial conditions were obtained by choosing the

desired initial horizontal velocity and lift-off angle of the

leg (ẋ0, θ0) and computing the remaining parameters with

the assumption of synchronization between the oscillatory

movements of the leg swing and compression in the passive

running model [26], [27]. In the following simulation, we

use the robot parameters in [26].

3) Simulation Results: We choose the desired initial con-

dition at lift off as ẋ0 = 2.0 (m) and θ0 = −6.0 (deg).

The rest is obtained based on an approximated condition of

passive running [27] for the nominal model of [26]. Note that

with this initial condition, the passive dynamics (no control)

of the robot can achieve several steps of running as reported

in [26], [27], however, eventually, it will fail since passive

running is intrinsically unstable.

Using the proposed method, we simultaneously obtained

the optimal feedback control for the control commands
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Fig. 7. Application of the optimized controller to achieve steady state
hopping with multiple cycles. External perturbations were applied in order
to evaluate the robustness of the obtained optimal feedback control law. The
robot was able to continue to run after the application of the perturbations
without falling over.

(u1, u2) and stiffness (u3, u4), and found the flight time T1
and the period for one complete cycle Tf for one hopping

cycle. The optimized flight time and one hopping cycle were

T1 = 0.410 (sec) and Tf = 0.487 (sec). Since the obtained

controller is based on an assumption of time-based switching,

there could be some mismatch in the exact timing in the

switching condition when applied to realistic event based

switching dynamics (flight to stance at touch-down yfoot = 0,

stance to flight when r = r0) to achieve multiple cycles

of locomotion. One of the benefits of our approach is that

it provides a locally optimal feedback control, deviations

from the optimal trajectory can be corrected, which will be

illustrated in the following examples.

a) Comparison to Individual Phase Optimization: As

a comparison, we optimized the control command, stiffness

and the movement duration in a sequential manner indi-

vidually for the flight phase subsequently followed by the

stance phase for one cycle of the movement. The optimized

movement duration for the flight phase was T1,ind = 0.410
(sec) and for the stance phase was Tstance,ind = 0.080
(sec), i.e., the total duration was Tf,ind = 0.490 (sec).

The total cost for this individual optimization was Jind =



1.686 which is comparable to the complete optimization case

Jcomp = 1.624 mentioned above. The optimized trajectories,

control commands and stiffness profiles are similar between

these two cases. However, interestingly, there found notable

difference in the robustness of the controller when these two

were applied to the event based switching dynamics where

the role of the feedback control becomes prominent.

The controller with complete cycle optimization was able

to achieve continuous stable running over multiple cycles.

However, with the controller obtained by individual opti-

mization, the robot failed to continue to run after 25 steps of

hopping. Although this is an empirical observation, it turned

out that this difference presumably came from the difference

in the optimal feedback gains. In the complete cycle op-

timization, the optimal feedback gains take the future goal

until the end of the hopping cycle into account including both

the flight and stance phases with the via-point and terminal

costs. However, in the individual optimization, corrections

are made only considering the immediate goal specified by

the terminal cost in each phase. This result highlights the

benefits of optimizing the whole cycle of the movement

in comparison to individually optimizing the movement in

a sequential manner. This comparison is reported in the

accompanied video.

b) Robustness against Perturbations: In this simula-

tion, we evaluate the robustness of the obtained optimal

feedback controller by applying external perturbations while

the robot is running. At t = 1.0 (sec), the robot is pushed

forward with Fx = 150 (N) and at t = 2.0 (sec), a backward

perturbation is applied Fx = −250 (N) for the duration of

0.05 (sec), respectively. Fig. 7 (a) depicts the movement of

the robot from t = 0.7 ∼ 3.9 (sec). Fig. 7 (b) show the

forward velocity ẋ (top), body height ycom (middle), and

leg angle θ and hip angle φ (bottom) from t = 0 to t = 6
(sec). Fig. 7 (c) show the control commands u1 and u2 (top),

hip stiffness u3 (center) and leg stiffness u4 (bottom). The

simulation result illustrate that the after the perturbations,

the robot was able to stabilize the periodic running behavior

without falling over demonstrating the robustness of the op-

timal feedback controller and the feasibility of the proposed

approach in this problem setting.

V. CONCLUSION

In this paper, we have presented a systematic methodol-

ogy for movement optimization with multiple phases and

switching dynamics in robotic systems with variable stiffness

actuation. Tasks including switching dynamics and interac-

tion with an environment is approximately modelled as a

hybrid dynamical system with time-based switching. With

an appropriate choice of the composite cost function to

encode the task, we have demonstrated the effectiveness

of the proposed approach in numerical simulations. Future

work will aim at hardware implementation of the proposed

approach including variable damping [28].
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